Skip to main content

Mathematical Analysis

Section 7.2 Series of Functions

Definition 7.16.

Let \((f_n)_{n=1}^\infty\subseteq\mathcal{B}(X)\) for a set \(X\text{.}\) We'll say \(\sum_{n=1}^\infty f_n\) converges uniformly (pointwise) if \((\sum_{n=1}^N f_n)_{N=1}^\infty \subseteq\mathcal{B}(X)\) converges uniformly (pointwise).

Remark 7.18.

This is a slightly non-standard version of the theorem. Combining this version with the comparison test gives the usual statement: If \((f_n)_{n=1}^\infty\subseteq\mathcal{B}(X)\) and \((M_n)_{n=1}^\infty\subseteq[0,\infty)\) so that
  1. for all \(x\in \mathbb{R},n\geq 1\) have \(\left|{f_n(x)}\right|\leq M_n\)
  2. \(\displaystyle \sum_{n=1}^\infty M_n<\infty\)
then \(\sum_{n=1}^\infty f_n\) converges uniformly.

Example 7.19.

The series \(\sum_{n=1}^\infty \frac{1}{n^2+x^2}\) converges uniformly over \(x\in\mathbb{R}\text{.}\)
Solution.
Let \(M_n=\frac{1}{n^2}\text{.}\) Then \(\left|{\frac{1}{n^2+x^2}}\right|\leq \frac{1}{n^2}\) for all \(x\in \mathbb{R}\) and \(\sum_{n=1}^\infty\frac{1}{n^2}=\frac{\pi^2}{6}<\infty\text{,}\) so by the Weierstass \(M\)-test, \(\sum_{n=1}^\infty\frac{1}{n^2+x^2}\) converges uniformly over \(x\in \mathbb{R}\text{.}\)
For any \(r>0\text{,}\) the series \(\sum_{n=0}^\infty \frac{z^n}{n!}\) converges uniformly on \(\{{z\in\mathbb{C}}\,:\,{\left|{z}\right|\leq r}\}\text{,}\) but \(\sum_{n=0}^\infty\frac{z^n}{n!}\) does not converge uniformly on \(\mathbb{C}\text{.}\)