Skip to main content

Mathematical Analysis

Section 1.3 The Real Number Field

Subsection Existence and Uniqueness

“It's always better to be real.”
―Selena Gomez

Definition 1.22.

A Dedekind cut in \(\mathbb{Q}\) is a set \(x\subseteq \mathbb{Q}\) (we're thinking of \(x\) as a real number) such that
  1. \(\displaystyle x\neq\emptyset, x\neq \mathbb{Q}\)
  2. If \(p\in\mathbb{Q},q\in x\) with \(p<q\text{,}\) then \(p\in x\)
  3. \(\nexists\) maximal element in \(x\text{,}\) ie if \(p\in x\,\exists\, q\in x\) with \(p<q\text{.}\)

Example 1.23.

  1. If \(p\in \mathbb{Q}\text{,}\) then \(\hat{p}=\{q\in\mathbb{Q}\,|\,q<p\}\subseteq \mathbb{Q}\) is a Dedekind cut
  2. \(\{p\in \mathbb{Q}\,|\,p<0\text{ or }p^2<2\}(=\{p\in\mathbb{Q}\,|\,p<\sqrt{2}\}\) but we don't technically have square root language yet)

Convention 1.25.

From now on \(\mathbb{R}\) is “the” complete ordered field. We'll always view \(\mathbb{Q}\subseteq \mathbb{R}\text{.}\)

Subsection Properties of the Real Numbers

“Never apologize for what you feel. It's like being sorry for being real.”
―Lil Wayne

Definition 1.30. \(n\th\) Root.

Let \(x\) be a nonnegative real number, and let \(n\) be a positive integer. We define \(x^{\frac1/n}\) to be the nonnegative real number \(y\) such that \(y^n = x\text{.}\)

Subsection Absolute Values and \(\C\)

“True faith is belief in the reality of absolute values.”
―William Ralph Inge

Definition 1.32.

Consider complex numbers \(\mathbb{C}=\{a+ib\,|\, a,b\in\mathbb{R}\}\) with mult by \(i^2=-1\text{.}\)

Definition 1.33.

  • Write \(\overline{a+ib}=a-ib\)
  • Re\((z)=\frac{z+\overline{z}}{z}\text{,}\) Im\((z)=\frac{z-\overline{z}}{zi}\) for all \(z\in\mathbb{C}\)
  • Or equiv: Re\((a+ib)=a\text{,}\) Im\((a+ib)=b\) for all \(a,b\in\mathbb{R}\text{.}\)
In any ordered field \(F\text{,}\) know \(-1<0, x^2\geq 0\) for all \(x\in F\) since \(i^2=-1\) in \(\mathbb{C}, \mathbb{C}\) is not an ordered field.

Definition 1.35. Absolute Value.

For \(z\in\mathbb{C}\text{,}\) \(|z|=\sqrt{\text{Re}(z)^2+\text{Im}(z)^2}=\sqrt{z\overline{z}}=\) “distance from \(z\) to \(0\)”.