Assume \(\left|{f}\right|\in\mathcal{R}[a,b]\text{.}\) Then \(-\left|{f(x)}\right|\leq f(x)\leq\left|{f(x)}\right|\) for \(x\in [a,b]\text{.}\) Then
\begin{equation*}
-\int_a^b\left|{f(x)}\right|\,dx\leq\int_a^b f(x)\,dx\leq \int_a^b\left|{f(x)}\right|\,dx.
\end{equation*}
Therefore,
\begin{equation*}
\left|{\int_a^b f(x)\,dx}\right|\leq\int_a^b\left|{f(x)}\right|\,dx.
\end{equation*}
We now show \(\left|{f}\right|\in\mathcal{R}[a,b]\text{.}\) By Riemann's Criterion, it's enough to show that for all partitions \(P\in\mathcal{P}[a,b]\text{,}\)
\begin{equation*}
U(\left|{f}\right|,P)-L(\left|{f}\right|,P)\leq U(f,P)-L(f,P).
\end{equation*}
To this end, fix \(P\in\mathcal{P}[a,b]\) and write \(P=\{{a=x_0<x_1<\dots<x_n=b}\}\text{.}\) Fix \(i=1,\dots,n\text{.}\) It's enough to show that
\begin{equation*}
M-i(\left|{f}\right|,P)-m_i(\left|{f}\right|,P)\leq M_i(f,P)-m_i(f,P).
\end{equation*}
Fix \(s,t\in[x_{i-1},x_i]\text{.}\) Then (with sups and infs taken over \(s',t'\in[x_{i-1},x_i]\))
\begin{equation*}
\begin{aligned}
\left|{f(s)}\right|-\left|{f(t)}\right|
&\leq \left|{f(s)-f(t)}\right|
\leq\sup_{s',t'}\left|{f(s')-f(t')}\right|
=\sup_{s'}f(s')-\inf_{t'}f(t')\\
&=M_i(f,P)-m_i(f,P).
\end{aligned}
\end{equation*}
Now, taking the supremum over \(s,t\in[x_{i-1},x_i]\text{,}\)
\begin{equation*}
\begin{aligned}
\sup_{s,t}\left({\left|{f(s)}\right|-\left|{f(t)}\right|}\right)
&\leq M_i(f,P)-m_i(f,P),\\
\sup_{s,t}\left({\left|{f(s)}\right|-\left|{f(t)}\right|}\right)
&=\sup_s\left|{f(s)}\right|-\inf_t\left|{f(t)}\right|
\end{aligned}
\end{equation*}
where again sup, inf taken over \(s,t\in[x_{i-1},x_i]\text{.}\) So
\begin{equation*}
\begin{aligned}
M_i(\left|{f}\right|,P)-m_i(\left|{f}\right|,P)
\leq M_i(f,P)-m_i(f,P).
\end{aligned}
\end{equation*}