Skip to main content

Mathematical Analysis

Section 4.4 Connected Sets

“Connection gives purpose and meaning to our lives.”
―Brené Brown

Definition 4.67. Connected, Disconnected.

A metric space \(X\) is disconnected if there are nonempty open sets \(U,V\subseteq X\) such that \(X=U\cup V\) and \(U\cap V=\emptyset\text{.}\)
A metric space is connected if it is not disconnected.

Example 4.68.

\([0,1]\cup[2,3]\) is disconnected, and the sphere is connected.

Definition 4.69. Path Connected.

A metric space is path-connected if for any \(x,y\in X\) there is a continuous function \(\gamma:[0,1]\rightarrow X\) so that \(\gamma(0)=x,\gamma(1)=y\text{.}\)
Every path-connected metric space is connected, but the converse is false.

Example 4.71.

\(\mathbb{R}^n\) is connected for \(n\in\mathbb{Z}_+\text{.}\)
Solution.
We'll show it's path-connected. Define \(\gamma:[0,1]\rightarrow \mathbb{R}^n\) by \(\gamma(t)=(1-t)x+ty\text{.}\) Then \(\gamma\) is continuous, \(\gamma(0)=x,\gamma(1)=y\text{.}\)
Consider \(a=\inf S\in [-\infty,\infty)\text{,}\)\(b=\sup S\in (-\infty,\infty]\text{.}\) It suffices to show \((a,b)\subseteq S\text{,}\) since then \(S\subseteq [a,b]\) and \(S\cap((-\infty,a)\cup(b,\infty))=\emptyset\text{.}\) To this end, suppose \(\exists \, t\in (a,b),t\notin S\text{.}\) Then \(S\subseteq (-\infty,t)\cup(t,\infty)\text{.}\) Both \((-\infty,t)\) and \((t,\infty)\) are open sets. Since \(t>a=\inf S,\exists\, s\in S\) with \(s<t\text{.}\) Then \(s\in S\cap(-\infty,t),\) so \(S\cap(-\infty,t)\) nonempty. Similarly, \(S\cap (t,\infty)\neq \emptyset\text{.}\) This shows \(S\) is disconnected, a contradiction. Hence \((a,b)\subseteq S\text{.}\)
Suppose ftsoc that \([0,1]\subseteq \mathbb{R}\) is disconnected. Then there exist open sets \(U,V\subseteq [0,1]\) such that \([0,1]=U\cup V, U\cap V=\emptyset, U\neq\emptyset\) and \(V\neq \emptyset\text{.}\) Wlog, \(0\in U\) (has to be in one of them). Let \(C=\{{t\in[0,1]}\,:\,{[0,t]\subseteq U}\}\text{.}\) It's enough to show \(1\in C\text{,}\) since then \(U=[0,1]\) and \(V=\emptyset\text{,}\) a contradiction. Note that \(0\in C\) so \(C\neq \emptyset\text{.}\) Let \(t_0=\sup C\in [0,1]\text{.}\)
Claim 1: \(t_0\in C\text{.}\) Suppose not. Then \([0,t_0]\not\subseteq U\text{.}\) As \(t_0=\sup C, \exists\, (t_n)_{n=1}^\infty\subseteq C\) so that \(t_1<t_2<\dots\) and \(\lim_{n\rightarrow\infty} t_n=t_0\text{.}\) Then \([0,t_n]\subseteq U\) for all \(n\geq 1\text{,}\) and so \([0,t_0)=\cup_{n=1}^\infty[0,t_n]\subseteq U\text{.}\) This implies \(t_0\notin U\) (since \([0,t_0]\not\subseteq U\)). So \(t_0\in V\text{.}\) Since \(t_0\in V,\,\exists\,\delta>0\) with \((t_0-\delta,t_0+\delta\cap [0,1]\subseteq V\text{.}\) Let \(t_1=\max\{{t_0-\frac{\delta}{2},\frac{t_0}{2}}\}\text{.}\) Note that \(t_0>0\) since \(0\in U,t_0\notin U\text{.}\) Then \(t_1\in(t_0-\delta,t_0)\cap[0,1]\text{.}\) Also, \([0,t_1]\subseteq [0,t_0)\subseteq U\text{.}\) So \(t_1\in U\cap V\text{,}\) and hence \(U\cap V\neq \emptyset\text{.}\)
Claim 2: \(t_0=1\text{.}\) Suppose \(t_0<1\text{.}\) As \(t_0\in C,\exists \varepsilon>0\) such that \((t_0-\varepsilon,t_0+e)\cap [0,1]\subseteq U\text{.}\) Let \(t_2=\min\{{t_0+\frac{\varepsilon}{2},\frac{1+t_0}{2}}\}\text{.}\) Then \(t_2>t_0\) and \(t_2\in(t_0-\varepsilon,t_0+\varepsilon)\cap [0,1]\subseteq U\text{.}\) Note that \([t_0,t_2]\subseteq (t_0-\varepsilon,t_0+\varepsilon)\cap [0,1]\subseteq U\) and as \(t_0\in C,[0,t_0]\subseteq U\text{.}\) So \([0,t_2]=[0,t_0]\cup [t_0,t_2]\subseteq U\text{.}\) Now, \(t_2\in C\) and \(t_2>t_0=\sup C\text{,}\) a contradiction.
This shows \(1\in C\text{.}\) Hence \(U=[0,1],V=\emptyset,\) a contradiction

Remark 4.75.

Using this, one can show that every path-connected metric space is connected. Using this, one can then show that all the intervals in the previous example are connected.
Suppose \(Y\) is disconnected. There are open sets \(U,V\subseteq Y\) such that \(U\cup V=Y,U\cap V=\emptyset, U\neq \emptyset, V\neq \emptyset\text{.}\) Then \(f^{-1}(U),f^{-1}(V)\subseteq X\) are open as \(f\) is continuous. Then \(f^{-1}(U)\cup f^{-1}(V)=f^{-1}(U\cup V)=f^{-1}(Y)=X\) and \(f^{-1}(U)\cap f^{-1}(V)=f^{-1}(U\cap V)=f^{-1}(\emptyset)=\emptyset\text{.}\) To show \(X\) is disconnected, we need to show \(f^{-1}(U)\neq \emptyset\) and \(f^{-1}(V)\neq \emptyset\text{.}\) As \(U\) is nonempty, exists \(y\in U\text{.}\) Since \(f\) is surjective, exists \(x\in X\) with \(f(x)=y\in U\text{.}\) Then \(x\in f^{-1}(U)\text{.}\) This shows \(f^{-1}(U)\neq \emptyset\text{.}\) Similarly, \(f^{-1}(V)\neq \emptyset\text{.}\)
WLOG let \(f(a)\leq f(b)\text{.}\) As \(f\) is continuous and \([a,b]\) is connected, \(f([a,b])\) is connected by the previous theorem. So \(f([a,b])\) is an interval. So \([f(a),f(b)]\subseteq f([a,b])\text{.}\) So if \(t\in [f(a),f(b)],\) there is \(c\in [a,b]\) with \(f(c)=t\text{.}\)
more stuff goes here
(\(\implies\)) Suppose \(S\) is disconnected in \(X\text{.}\) So exist open \(U,V\subseteq X\) with \(S\subseteq U\cup V, U\cap V=\emptyset,U\cup S\neq \emptyset,V\cap S\neq \emptyset\text{.}\) Then \(U_0:=U\cap S, V_0:=V\cap S\) are open subsets of \(S\) (open in \(S\)). Also, \(S=U_0\cup V_0,U_0\cap V_0=\emptyset,U_0\neq \emptyset, V_0\neq \emptyset\text{,}\) so \(S\) is disconnected as a metric space.
(\(\impliedby\)) Suppose \(S\) is disconnected as a metric space. There are open sets \(U_0,V_0\subseteq S\) with \(S=U_0\cup V_0, U_0\cap V_0=\emptyset,U_0\neq \emptyset, V_0\neq \emptyset\text{.}\)
Exercise: Exist open sets \(U',V'\subseteq X\) with \(U_0=S\cap U'\text{,}\) \(V_0=S\cap V'\text{.}\)
Then \(S\subseteq U'\cup V', U'\cap V'\cap S= \emptyset, U'\cap S\neq\emptyset,V'\cap S\neq\emptyset\text{.}\) (If \(U'\cap V'=\emptyset\text{,}\) we're done.) Since \(U'\cap V'\cap S=\emptyset,\) we have that \(U'\cap S\subseteq X\setminus V'\text{.}\) As \(V'\) is open, \(X\setminus V'\) is closed, and so \(\overline{U'\cap S}\subseteq X\setminus V'\text{.}\) Therefore, \((\overline{U'\cap S})\cap V'=\emptyset\text{.}\) In particular, \((\overline{U'\cap S})\cap (V'\cap S)=\emptyset\text{.}\) Similarly,\((U'\cap S)\cap (\overline{V'\cap S})=\emptyset\text{.}\) Apply the key lemma with \(A=U'\cap S,B=V'\cap S\) to get open sets \(U,V\subseteq X\) with \(U'\cap S\subseteq U, V'\cap S\subseteq V\text{,}\) and \(U\cap V=\emptyset\text{.}\) Then \(S\subseteq (U'\cup V')\cap S=(U'\cap S)\cup (V'\cap S)\subseteq U\cup V\text{.}\) Also, since \(\emptyset\neq U'\cap S\subseteq U\cap S\text{,}\) we have \(U\cap S\neq \emptyset\text{.}\) Similarly \(V\cap S\neq \emptyset\text{.}\) So \(S\) is disconnected in \(X\text{.}\) ◻