Skip to main content

Mathematical Analysis

Section 6.2 Riemann-Stieltjes Integrals

Given bounded functions \(f,g\in\mathcal{B}[a,b]\text{,}\) the Riemann-Stieltjes Integral \(\int_a^b f(x)\,dg(x)\text{,}\) when it exists will represent a “weighted sum” of \(f\) over \([a,b]\) with weights determined by “the derivative” of \(g\text{.}\) (although \(g\) won't always be differentiable!) Under suitible conditions, we will have
\begin{equation*} \int_a^b f(x)\,dg(x)=\int_a^bf(x)g'(x). \end{equation*}
Roughly, we'll define \(\int_a^b\,dg(X)\) as a limit of “weighted Riemann sums.”

Definition 6.23.

For functions \(f,g\in\mathcal{B}[a,b]\text{,}\) a partition \(P=\{{a=x_0<\dots<x_n=b}\}\) and an evaluation sequence \(X\) for \(P\text{,}\) define the Riemann-Stieltjes Sum
\begin{equation*} I(f,P,X,g)=\sum_{i=1}^nf(x_i^*)(g(x_i)-g(x_{i-1})). \end{equation*}

Remark 6.24.

If \(g(x)=x\text{,}\) then \(I(f,P,X,g)=I(f,P,X)\text{.}\)

Definition 6.25.

For bounded functions \(f,g:[a,b]\rightarrow\mathbb{R}\text{,}\) we say that \(f\) is Riemann-Stieltjes integrable over \([a,b]\) with respect to \(g\) if there is an \(A\in\mathbb{R}\) so that for all \(\varepsilon>0\) there is a partition \(P\in\mathcal{P}[a,b]\) so that for all partitions \(Q\in\mathcal{P}[a,b]\) with \(P\subseteq Q\) and evaluation sequences \(X\) for \(Q\text{,}\)
\begin{equation*} \left|{I(f,P,X,g)-A}\right|<\varepsilon \end{equation*}
in which case \(A\) is unique and we call this \(A\) the Riemann-Stieltjes integral of \(f\) over \([a,b]\) with respect to \(g\) and we write
\begin{equation*} A=\int_a^b f(x)\,dg(x). \end{equation*}
Let \(\mathcal{R}([a,b],g)\) denote all bounded functions \(f\) which are Riemann-Stieltjes integrable over \([a,b]\) with respect to \(g\text{.}\)

Example 6.27.

The Heaviside function is given by
\begin{equation*} \begin{aligned} H(x) =\begin{cases} 0 & x\leq 0\\ 1 & x>0. \end{cases} \end{aligned} \end{equation*}
Recall: a function \(f:\mathbb{R}\rightarrow \mathbb{R}\) is right continuous at \(c\in \mathbb{R}\) if \(\lim_{x\rightarrow c^+}f(x)=f(c)\text{.}\)
Let \(\varepsilon>0\text{.}\) Fix \(\delta>0\) such that for all \(x\in(c,c+\delta)\) with \(x\in[a,b]\) we have
\begin{equation*} \left|{f(x)-f(c)}\right|<\varepsilon. \end{equation*}
Let \(d\in(c,c+\delta)\cap[a,b]\text{,}\) and consider \(P=\{{a,c,d,b}\}\in\mathcal{P}[a,b]\text{.}\) Now let \(Q\in\mathcal{P}[a,b]\) such that \(Q\supseteq P\) and let \(X\) be an evaluation sequence for \(Q\text{.}\) Then write \(Q=\{{a=x_0<\dots<x_n=b}\}\) and \(X=(x_1^*,\dots,x_n^*)\text{.}\) Let \(k=0,\dots,n-1\) with \(x_k=c\text{.}\) Then
\begin{equation*} \begin{aligned} g(x_i)-g(x_{i-1}) =\begin{cases} 0&i\neq k+1\\ 1&i=k+1 \end{cases} \end{aligned} \end{equation*}
for \(i=1,\dots,n\text{.}\) Then \(I(f,Q,X,g)=\sum_{i=1}^n f(x_i^*)(g(x_i)-g(x_{i-1}))=f(x_k^*)\text{.}\) Since \(C\leq x_{k}^*\leq x_{k+1}\leq d<c+\delta\text{,}\) we have \(\left|{f(x_k^*)-f(c)}\right|<\varepsilon\text{.}\) Then \(\left|{I(f,Q,X,g)-f(c)}\right|<\varepsilon\text{.}\)

Remark 6.30.

Continuous functions are not necessarily Riemann-Stieltjes integrable! Let \(f(x)=x\) and
\begin{equation*} g(x)=\begin{cases} 1 & x\in \mathbb{Q}\\ 0 & x\notin\mathbb{Q} \end{cases} \end{equation*}
Then \(g\notin\mathcal{R}([0,1])=\mathcal{R}([0,1],f)\) so by ibp \(f\notin \mathcal{R}([0,1],g)\text{.}\)

Example 6.32.

\(f(x)=x^2, g(x)=\begin{cases} x^2 & 0\leq x\le 1\\ e^x & 1<x\le 2\\ 1 & 2<x\le 3 \end{cases}\) Compute \(\int_0^3 f(x)\,dg(x)\text{.}\)
Solution.
Have \(g\in \mathcal{R}[0,3]\) as is bounded and has only finitely many discontinuities. Also \(f\) is differentiable and \(f'\in \mathcal{R}[0,3]\text{.}\) So \(g\in\mathcal{R}([0,3],f)\) and
\begin{equation*} \begin{aligned} \int_0^3 g(x)\,df(x) &=\int_0^3 g(x)f'(x)\,dx\\ &=\int_0^1 x^2 2x\,dx + \int_1^2 e^x 2x\,dx+\int_2^32x\,dx\\ &=[\frac{1}{2}x^4]_0^1 +[2xe^x]_1^2-\int_1^22e^x\,dx+[x^2]_2^3\\ &=\frac{1}{2}+4e^2-2e-2e^2+2e+9-4 =\frac{11}{2}+2e^2\\ \implies \int_0^3 f(x)\,dg(x) &=f(3)g(3)-f(0)g(0)-\int_0^3 g(x)\,df(x)\\ &=9-(\frac{11}{2}+2e^2) =\frac{7}{2}-2e^2. \end{aligned} \end{equation*}
To get a reasonable theory of integration, we'll want to impose more conditions on \(g\) when defining \(\int_a^bf(x)\,dg(x)\text{.}\)