Skip to main content

Mathematical Analysis

Section 4.6 Continuous Functions

“Life is continuous, and is infinte.”
―Edgar Cayce

Definition 4.83.

Let \((X,d_X)\text{,}\) \((Y,d_Y)\) be metric spaces. Let \(f:X\rightarrow Y\) be a function. We say \(f\) is continuous at a point \(x_0\in X\) if for all \(\varepsilon>0,\exists\delta>0\) such that for all \(x\in X\) with \(d_X(x,x_0)<\delta\) we have \(d_Y(f(x),f(x_0))<\varepsilon\text{.}\)
A function \(f:X\rightarrow Y\) is continuous if \(f\) is continuous at every point \(x_0\in X\text{.}\)

Convention 4.84.

We'll often use \(d\) to denote both the metric on \(X\) and the metric on \(Y\) when it causes no confusion.
If \(a\in S,a\) is a cluster point of \(S\) then \(f\) is continuous at \(a\) iff \(f(a)=\lim_{x\rightarrow a}f(x)\text{.}\)

Example 4.86.

If \(f:\mathbb{R}\rightarrow \mathbb{R}\) is given by \(f(x)=x^2\) then \(f\) is continuous.
Solution.
Fix \(x_0\in \mathbb{R}\) and \(\varepsilon>0\text{.}\) Let \(\delta=\min\{{\frac{1}{2},\frac{\varepsilon}{2\left|{x_0}\right|+1}}\}>0\text{.}\) If \(x\in\mathbb{R}\) and \(d(x,x_0)<\delta\) then
\begin{equation*} \begin{aligned} d(f(x),f(x_0)) &=\left|{f(x)-f(x_0)}\right| =\left|{x^2-x_0^2}\right| \leq \left|{x^2-xx_0}\right|+\left|{xx_0-x^2}\right|\\ &=\left|{x}\right|\left|{x-x_0}\right|+\left|{x-x_0}\right|\left|{x_0}\right| \leq (\left|{x}\right|+\left|{x_0}\right|)\delta \leq (\left|{x-x_0}\right|+\left|{x_0}\right|+\left|{x_0}\right|)\delta\\ &\leq (2\left|{x_0}\right|+1)\delta (\text{ since }\delta<1)\\ &<\varepsilon \end{aligned} \end{equation*}

Remark 4.87.

\(\delta\) can depend on \(\varepsilon\) and \(x_0\text{,}\) but not on \(x\)

Example 4.88.

The function \(f:\mathbb{C}^n\setminus\{{0}\}\rightarrow\mathbb{R}\text{,}\) \(f(x)=\frac{1}{\left|{\left|{{x}}\right|}\right|}\) is continuous.
Solution.
For \(\varepsilon>0\) and \(x_0\in\mathbb{C}^n\setminus\{{0}\}\text{.}\) Let \(\delta=\min\{{\frac{\left|{\left|{{x_0}}\right|}\right|}{2},\frac{\left|{\left|{{x_0}}\right|}\right|^2\varepsilon}{2}}\}>0\text{.}\)
Fix \(x\in \mathbb{C}^n\setminus\{{0}\}\) with \(\left|{\left|{{x-x_0}}\right|}\right|<\delta\text{.}\) Since \(\left|{\left|{{x-x_0}}\right|}\right|\leq\frac{\left|{\left|{{x_0}}\right|}\right|}{2}\text{,}\) we have \(\left|{\left|{{x}}\right|}\right|\geq \frac{\left|{\left|{{x_0}}\right|}\right|}{2}\text{.}\) Now, \(\left|{f(x)-f(x_0)}\right|=\left|{\frac{1}{\left|{\left|{{x}}\right|}\right|}-\frac{1}{\left|{\left|{{x_0}}\right|}\right|}}\right|\text{.}\) Continue (from above):
\begin{equation*} \begin{aligned} \left|{\frac{1}{\left|{\left|{{x}}\right|}\right|}-\frac{1}{\left|{\left|{{x_0}}\right|}\right|}}\right| &=\frac{\left|{\left|{\left|{{x_0}}\right|}\right|-\left|{\left|{{x}}\right|}\right|}\right|}{\left|{\left|{{x_0}}\right|}\right|\cdot\left|{\left|{{x}}\right|}\right|} \leq \frac{\left|{\left|{{x_0-x}}\right|}\right|}{\left|{\left|{{x_0}}\right|}\right|\cdot\left|{\left|{{x}}\right|}\right|} = \frac{\left|{\left|{{x-x_0}}\right|}\right|}{\left|{\left|{{x_0}}\right|}\right|\cdot\left|{\left|{{x}}\right|}\right|}\\ &\leq \frac{2\left|{\left|{{x-x_0}}\right|}\right|}{\left|{\left|{{x_0}}\right|}\right|^2} (\text{as }\left|{\left|{{x}}\right|}\right|\geq \frac{\left|{\left|{{x_0}}\right|}\right|}{2})\\ &<\frac{2\delta}{\left|{\left|{{x_0}}\right|}\right|^2} <\varepsilon \end{aligned} \end{equation*}
so \(f\) is continuous.
If \(n\in\mathbb{Z}_+\setminus\{{0}\}\) and \(f:[0,\infty)\rightarrow\mathbb{R},f(x)=x^{\frac{1}{n}}\text{,}\) then \(f\) is continuous.
Fix \(x_0\in\mathbb{Q}\text{.}\) We need \(\exists\varepsilon,\forall\delta>0\,\exists x\in(x_0-\delta,x_0+\delta)\) such that \((x,x_0)<\delta\) and \(d(f(x),f(x_0))\geq \varepsilon\text{.}\) Write \(x_0=\frac{p}{q}\) with \(p,q\in\mathbb{Z},q\geq 1,\gcd(p,q)=1\) so that \(f(x_0)=\frac{1}{q}\text{.}\) Set \(\varepsilon=\frac{1}{q}\text{.}\) Fix \(\delta>0\text{.}\) Let \(x\in (x_0-\delta,x_0+\delta)\) be irrational (know exists from next lemma). Then \(\left|{f(x_0)-f(x)}\right|=\frac{1}{q}=\varepsilon\text{.}\)
Fix \(\varepsilon>0\) and \(x_0\in\mathbb{R}\setminus\mathbb{Q}\text{.}\) Let \(M,N\in\mathbb{Z}_+\setminus\{{0}\}\) with \(\left|{x_0}\right|<M,\frac{1}{N}<\varepsilon\text{.}\) Define \(A=\{{\frac{p}{q}\in \mathbb{Q}}\,:\,{p,q\in\mathbb{Z},1\leq q\leq N,\left|{\frac{p}{q}}\right|\leq M,\gcd(p,q)=1}\}\text{.}\)
Then \(A\) is a finite set and hence is closed. Also as \(A\subseteq \mathbb{Q}\) and \(x_0\notin\mathbb{Q}\text{,}\) we have \(x_0\in(\mathbb{R}\setminus A)\cap(-M,M)\text{.}\) Since \((\mathbb{R}\setminus A)\cap(-M,M)\) is open, exists \(\delta>0\) such that \((x_0-\delta,x_0+\delta)\subseteq (\mathbb{R}\setminus A)\cap(-M,M)\text{.}\)
Fix \(x\in\mathbb{R}\) with \(\left|{x-x_0}\right|<\delta\text{.}\) We want \(\left|{f(x)-f(x_0)}\right|<\varepsilon\text{.}\)
Case 1: If \(x\in\mathbb{R}\setminus\mathbb{Q}\) then \(f(x)=f(x_0)=0\text{.}\)
Case 2: Suppose \(x=\frac{p}{q};p,q\in \mathbb{Z},q\geq 1,\gcd(p,q)=1\text{.}\) As \(\left|{x-x_0}\right|<\delta,\) we have \(\left|{x}\right|<M\) and \(x\notin A\) so \(q>N\) and \(\left|{f(x)}\right|=\frac{1}{q}<\frac{1}{N}<\varepsilon\text{.}\)
  1. (1\(\implies\)6) Suppose \(f:X\rightarrow Y\) is continuous and \(A\subseteq X\text{.}\) We want \(f(\overline{A})\subseteq \overline{f(A)}\text{.}\) Fix \(a\in\overline{A}\text{.}\) Fix \(\varepsilon>0\text{.}\) We want \(B_\varepsilon(f(a))\cap f(A)\neq \emptyset\text{.}\) Since \(f\) is continuous, exists \(\delta>0\) so that for all \(x\in X, d(a,x)<\delta\implies d(f(a),f(x))<\varepsilon\text{.}\) Since \(a\in\overline{A}, B_\delta(a)\cap A\neq \emptyset\text{.}\) Let \(x\in B_\delta(a)\cap A\text{.}\) Then \(d(a,x)<\delta\implies d(f(a),f(x))<\varepsilon\text{.}\) Now \(f(x)\in B_\varepsilon(f(a))\cap f(A)\text{.}\)
  2. Suppose \(F\subseteq Y\) is closed. Then \(\star f(\overline{f^{-1}(F)})\subseteq_{(6)}\overline{f(f^{-1}(F))} \subseteq_{(b)} \overline{F}=F\text{.}\) Then \(\overline{f^{-1}(F)}\subseteq_{(a)}f^{-1}(f(\overline{f^{-1}(F)}))\subseteq_\star f^{-1}(F)\subseteq \overline{f^{-1}(F)}\text{.}\) So \(\overline{f^{-1}(F)}=f^{-1}(F)\) so \(f^{-1}(F)\) is closed.
  3. (5\(\implies\)4) Assume 5 holds. Assume \(U\subseteq Y\) is open. Have \(Y\setminus U\) is closed, and so by 5 \(X\setminus f^{-1}(U)=f^{-1}(Y\setminus U)\subseteq X\) is closed. So \(f^{-1}(U)=f^{-1}\) is open.
  4. (4\(\implies\)3) Suppose \((x_n)_{n=1}^\infty\subseteq X\) converges and let \(x=\lim_{n\rightarrow\infty}x_n\text{.}\) Fix \(\varepsilon>0\text{.}\) Then \(B_\varepsilon(f(x))\subseteq Y\) is open. By 4, \(f^{-1}(B_\varepsilon(f(x)))\subseteq X\) is open. Also \(x\in f^{-1}(B_\varepsilon(f(x)))\text{,}\) and hence exists \(\delta>0\) with \(B_\delta(x)\subseteq f^{-1}(B_\varepsilon(f(x)))\text{.}\) Since \(x_n\rightarrow x,\exists N\in\mathbb{Z}_+\) such that for all \(n\geq N, d(x_n,x)<\delta\text{.}\) If \(n\geq N,\) then \(x_n\in B_\delta\subseteq f^{-1}(B_\varepsilon(f(x)))\text{.}\) So for all \(n\geq N, f(x_n)\in B_\varepsilon(f(x))\text{.}\) Hence \(\lim_{n\rightarrow\infty}f(x_n)=f(x)\text{.}\)
  5. (3\(\implies\)2) Let \(x_0\in X\) be a cluster point. If \((x_n)_{n=1}^\infty X\setminus\{{x_0}\}\text{,}\) \(\lim_{n\rightarrow \infty}x_n=x_0\text{,}\) then by 3 \(\lim_{n\rightarrow\infty}f(x_n)=f(x_0)\text{.}\) By earlier result, this implies \(\lim_{x\rightarrow x_0}f(x)=f(x_0).\)
  6. (2\(\implies\)1) We know that \(f\) is continuous at each isolated point in \(X\text{.}\) Suppose then that \(x_0\in X\) is a cluster point. Fix \(\varepsilon>0\text{.}\) By 2, \(\lim_{x\rightarrow x_0}f(x)=f(x_0)\text{,}\) and so exists \(\delta>0\) so that for all \(x\in B_\delta (x_0)\setminus\{{x_0}\}\text{,}\) we have \(d(f(x), f(x_0))<\varepsilon\text{.}\) Also holds if \(x=x_0\text{.}\) So for all \(x\in B_\delta (x_0),d(f(x), f(x_0))<\varepsilon\) so \(f\) is continuous.

Example 4.92.

Let \(S^2=\{{(x,y,z)\in\mathbb{R}^3}\,:\,{x^2+y^2+z^2=1}\}\) is a closed subset of \(\mathbb{R}^3\text{.}\)
Solution.
Let \(p:\mathbb{R}^3\rightarrow \mathbb{R}\) by \(p(x,y,z)=x^2+y^2+z^2\) is continuous. Also, \(\{{1}\}\subseteq \mathbb{R}\) is closed, so \(S^2=p^{-1}(\{{1}\})\) is closed.
If \(X\) is compact and \(F\subseteq X\) is closed, then \(F\) is compact (closed subset of a compact space). Then \(f(F)\subseteq Y\) is compact by the previous result. So \(f(F)\) is closed.
Let \(g=f^{-1}:Y\rightarrow X\text{.}\) If \(F\subseteq X\) is closed, then the preimage of \(F\) under \(g,g^{-1}(F)\subseteq Y\) equals \(f(F)\subseteq Y\text{.}\) So \(g^{-1}(F)\) is closed by the previous corollary. Hence \(g\) is continuous.
We know that \(f(X)\) is compact and in particular is closed and bounded. Since \(f(X)\) is bounded and nonempty, \(a:=\sup f(x)\in \mathbb{R}\text{.}\) Then there is a sequence \((t_n)_{n=1}^\infty\subseteq f(X)\) with \(\lim_{n\rightarrow\infty} t_n=a\) (indeed for \(n\in \mathbb{Z}_+\text{,}\) choose \(t_n\in f(X)\) with \(t_n>a-\frac{1}{n}\text{.}\) Then since \(a-\frac{1}{n}<t_n\leq a\text{,}\) we have \(t_n\rightarrow a\text{.}\)) Since \(f(X)\) is closed and \(t_n\in f(X)\) for all \(n\geq 1,\) we have \(a\in f(X)\text{.}\) Now, fix \(x_1\in X\) with \(f(x_1)=a\text{.}\) Note that \(-f:X\rightarrow \mathbb{R}\) is continuous, so exists \(x_2\in X\) with \(-f(x_2)=\sup_{x\in X}(-f(x))=-\inf_{x\in X}f(x)\text{.}\)