Get \(\lim_{n\rightarrow\infty}f_n(0)=1=f(0)\) and if \(x\in(0,1]\) then for all \(n\in\mathbb{Z}_+\) with \(\frac{1}{n}<x\text{,}\) we have \(f_n(x)=0\text{.}\) So \(\lim_{n\rightarrow\infty}f_n(x)=0=f(x)\text{.}\) Then \(f_n\rightarrow f\) pointwise and \(f\) is not continuous.
Example7.4.
Another example: \(g,g_n:[0,1]\rightarrow\mathbb{R}\text{,}\)
If \(X,Y\) are metric spaces and \((f_n:X\rightarrow Y)_{n=1}^\infty\) is a sequence of continuous functions, \(f:X\rightarrow Y\) is a function, and \(f_n\rightarrow f\) uniformly, then \(f\) is continuous. Further, if each \(f_n\) is uniformly continuous, then so is \(f\text{.}\)
Convention7.7.
For a set \(X\text{,}\) let \(\mathcal{B}(X)\)\(=\{{\text{bounded functions }X\rightarrow\mathbb{C}}\}\text{.}\) (If necessary, we'll use \(\mathcal{B}(X,\mathbb{C})\) or \(\mathcal{B}(X,\mathbb{R})\) when it is important whether codomain is \(\mathbb{C}\) or \(\mathbb{R}\))
Definition7.8.
Define \(\left|{\left|{{\cdot}}\right|}\right|_\infty\)\(:\mathcal{B}(X)\rightarrow[0,\infty)\) by \(\left|{\left|{{f}}\right|}\right|_\infty=\sup\{{\left|{f(x)}\right|}\,:\,{x\in X}\}\text{.}\) This is called the \(\infty\)-norm of \(f\) (aka supremum norm or uniform norm
Convention7.9.
For \(f\in\mathcal{C}[a,b]\) (or more generally) and \(1\leq p<\infty\text{,}\) can define \(\left|{\left|{{f}}\right|}\right|_p\)\(=\left({\int_a^b\left|{f(x)}\right|^p\,dx}\right)^{1/p}\text{.}\) It turns out that \(\lim_{p\rightarrow\infty}\left|{\left|{{f}}\right|}\right|_p=\left|{\left|{{f}}\right|}\right|_\infty\) (this is reason for notation; \(\left|{\left|{{\cdot}}\right|}\right|_p\) makes sense for \(0<p<1\text{,}\) but it doesn't behave well)
Theorem7.10.
\(\mathcal{B}(X)\) is a vector space
For \(f,g\in\mathcal{B}(X),\alpha\in\mathbb{C}\text{,}\)
The function \(d_\infty:\mathcal{B}(x)\times \mathcal{B}(x)\rightarrow[0,\infty)\) by \(d_\infty(f,g)=\left|{\left|{{f-g}}\right|}\right|_\infty\) is a metric on \(\mathcal{B}(X)\text{.}\)
if \((f_n)_{n=1}^\infty\subseteq\mathcal{B}(X)\) and \(f\in\mathcal{B}(X)\text{,}\) then \(f_n\rightarrow f\) in the metric \(d_\infty\iff f_n\rightarrow f\) uniformly on \(X\text{.}\) (both conditions mean
Addition, multiplication, and conjugation are continuous on \(\mathcal{B}(X)\text{:}\) ie if \((f_n)_{n=1}^\infty,(g_n)_{n=1}^\infty\subseteq\mathcal{B}(X)\text{,}\)\(f_n\rightarrow f\) and \(g_n\rightarrow g\) uniformly then
For any set \(X\text{,}\)\((\mathcal{B}(X),d_\infty)\) is complete, so every uniformly Cauchy sequence of bounded function converges uniformly.
In a few cases we have tests to check uniform convergence.
Theorem7.12.Dini's Theorem.
Suppose \(X\) is a compact metric space \((f_n)_{n=1}^\infty\subseteq C(X,\mathbb{R}),f\in C(X,\mathbb{R})\text{,}\)\(f_n\rightarrow f\) pointwise and \(f_1\leq f_2\leq f_3\leq \dots\) pointwise. Then \(f_n\rightarrow f\) uniformly.
Dini's theorem holds for decreasing functions as well.
There are increasing sequences of continuous functions \(f_1\leq f_2\leq f_3\leq \dots\) which converge pointwise to a function \(f\text{,}\) but not uniformly. Dini's Thm tells us this can't happen when the limit of \(f\) is continuous though.