Skip to main content Contents Index
Prev Up Next \(\DeclareMathOperator{\ann}{ann}
\DeclareMathOperator{\Ass}{Ass}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\can}{can}
\DeclareMathOperator{\Ch}{Ch}
\DeclareMathOperator{\char}{char}
\DeclareMathOperator{\cp}{CharPoly}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\colim}{colim}
\DeclareMathOperator{\cone}{cone}
\DeclareMathOperator{\cont}{cont}
\DeclareMathOperator{\diam}{diam}
\DeclareMathOperator{\dim}{dim}
\DeclareMathOperator{\edim}{embdim}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\eval}{eval}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\Fun}{Fun}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\gcd}{gcd}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\height}{height}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Inn}{Inn}
\DeclareMathOperator{\ker}{ker}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Mat}{Mat}
\DeclareMathOperator{\max}{max}
\DeclareMathOperator{\Min}{Min}
\DeclareMathOperator{\mp}{MinPoly}
\DeclareMathOperator{\mSpec}{mSpec}
\DeclareMathOperator{\Nul}{Nul}
\DeclareMathOperator{\ns}{nullspace}
\DeclareMathOperator{\opp}{opp}
\DeclareMathOperator{\Orb}{Orb}
\DeclareMathOperator{\Out}{Out}
\DeclareMathOperator{\pdim}{pdim}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\PtStab}{pStab}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\sStab}{SetStab}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Span}{Span}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\Supp}{Supp}
\DeclareMathOperator{\Syl}{Syl}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\trace}{trace}
\DeclareMathOperator{\trdeg}{trdeg}
\newcommand{\Ob}{\mathrm{Ob}}
\newcommand{\Set}{\mathbf{Set}}
\newcommand{\Grp}{\mathbf{Grp}}
\newcommand{\Ab}{\mathbf{Ab}}
\newcommand{\Sgrp}{\mathbf{Sgrp}}
\newcommand{\Ring}{\mathbf{Ring}}
\newcommand{\Fld}{\mathbf{Fld}}
\newcommand{\cRing}{\mathbf{cRing}}
\newcommand{\Mod}[1]{#1-\mathbf{Mod}}
\newcommand{\Cx}[1]{#1-\mathbf{Comp}}
\newcommand{\vs}[1]{#1-\mathbf{vect}}
\newcommand{\Vs}[1]{#1-\mathbf{Vect}}
\newcommand{\vsp}[1]{#1-\mathbf{vect}^+}
\newcommand{\Top}{\mathbf{Top}}
\newcommand{\Setp}{\mathbf{Set}_*}
\newcommand{\Alg}[1]{#1-\mathbf{Alg}}
\newcommand{\cAlg}[1]{#1-\mathbf{cAlg}}
\newcommand{\PO}{\mathbf{PO}}
\newcommand{\Cont}{\mathrm{Cont}}
\newcommand{\MaT}[1]{\mathbf{Mat}_{#1}}
\newcommand{\Rep}[2]{\mathbf{Rep}_{#1}(#2)}
\def\l{\lambda}
\def\a{\alpha}
\def\b{\beta}
\def\d{\delta}
\def\e{\varepsilon}
\def\g{\gamma}
\def\t{\theta}
\def\s{\sigma}
\def\z{\zeta}
\def\vp{\varphi}
\newcommand{\A}{\mathbb{A}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\D}{\mathbb{D}}
\newcommand{\E}{\mathbb{E}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\G}{\mathbb{G}}
\newcommand{\H}{\mathbb{H}}
\newcommand{\I}{\mathbb{I}}
\newcommand{\J}{\mathbb{J}}
\newcommand{\K}{\mathbb{K}}
\newcommand{\L}{\mathbb{L}}
\newcommand{\M}{\mathbb{M}}
\newcommand{\N}{\mathbb{N}}
\newcommand{\O}{\mathbb{O}}
\newcommand{\P}{\mathbb{P}}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\S}{\mathbb{S}}
\newcommand{\T}{\mathbb{T}}
\newcommand{\U}{\mathbb{U}}
\newcommand{\V}{\mathbb{V}}
\newcommand{\W}{\mathbb{W}}
\newcommand{\X}{\mathbb{X}}
\newcommand{\Y}{\mathbb{Y}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\ON}{\mathbb{ON}}
\def\cA{\mathcal A}
\def\cB{\mathcal B}
\def\cC{\mathcal C}
\def\cD{\mathcal D}
\def\cE{\mathcal E}
\def\cF{\mathcal F}
\def\cG{\mathcal G}
\def\cH{\mathcal H}
\def\cI{\mathcal I}
\def\cJ{\mathcal J}
\def\cK{\mathcal K}
\def\cL{\mathcal L}
\def\cM{\mathcal M}
\def\cN{\mathcal N}
\def\cO{\mathcal O}
\def\cP{\mathcal P}
\def\cQ{\mathcal Q}
\def\cR{\mathcal R}
\def\cS{\mathcal S}
\def\cT{\mathcal T}
\def\cU{\mathcal U}
\def\cV{\mathcal V}
\def\cW{\mathcal W}
\def\cX{\mathcal X}
\def\cY{\mathcal Y}
\def\cZ{\mathcal Z}
\newcommand{\fa}{{\mathfrak a}}
\newcommand{\fb}{{\mathfrak b}}
\newcommand{\fc}{{\mathfrak c}}
\newcommand{\fd}{{\mathfrak d}}
\newcommand{\fe}{{\mathfrak e}}
\newcommand{\ff}{{\mathfrak f}}
\newcommand{\fg}{{\mathfrak g}}
\newcommand{\fh}{{\mathfrak h}}
\newcommand{\fi}{{\mathfrak i}}
\newcommand{\fj}{{\mathfrak j}}
\newcommand{\fk}{{\mathfrak k}}
\newcommand{\fl}{{\mathfrak l}}
\newcommand{\fm}{{\mathfrak m}}
\newcommand{\fn}{{\mathfrak n}}
\newcommand{\fo}{{\mathfrak o}}
\newcommand{\fp}{{\mathfrak p}}
\newcommand{\fq}{{\mathfrak q}}
\newcommand{\fr}{{\mathfrak r}}
\newcommand{\fs}{{\mathfrak s}}
\newcommand{\ft}{{\mathfrak t}}
\newcommand{\fu}{{\mathfrak u}}
\newcommand{\fv}{{\mathfrak v}}
\newcommand{\fw}{{\mathfrak w}}
\newcommand{\fx}{{\mathfrak x}}
\newcommand{\fy}{{\mathfrak y}}
\newcommand{\fz}{{\mathfrak z}}
\newcommand{\fK}{{\mathfrak K}}
\newcommand{\fR}{{\mathfrak R}}
\def\sA{\mathscr A}
\def\sB{\mathscr B}
\def\sC{\mathscr C}
\def\sD{\mathscr D}
\def\sE{\mathscr E}
\def\sF{\mathscr F}
\def\sG{\mathscr G}
\def\sH{\mathscr H}
\def\sI{\mathscr I}
\def\sJ{\mathscr J}
\def\sK{\mathscr K}
\def\sL{\mathscr L}
\def\sM{\mathscr M}
\def\sN{\mathscr N}
\def\sO{\mathscr O}
\def\sP{\mathscr P}
\def\sQ{\mathscr Q}
\def\sR{\mathscr R}
\def\sS{\mathscr S}
\def\sT{\mathscr T}
\def\sU{\mathscr U}
\def\sV{\mathscr V}
\def\sW{\mathscr W}
\def\sX{\mathscr X}
\def\sY{\mathscr Y}
\def\sZ{\mathscr Z}
\def\adots{a_1, \dots, a_n}
\def\bdots{b_1, \dots, b_n}
\def\ddots{d_1, \dots, d_n}
\def\edots{e_1, \dots, e_n}
\def\fdots{f_1, \dots, f_n}
\def\gdots{g_1, \dots, g_n}
\def\udots{u_1, \dots, u_n}
\def\xdots{x_1, \dots, x_n}
\def\tS{\tilde{S}}
\def\sdp{\rtimes}
\newcommand{\tensor}{\otimes}
\newcommand{\igen}[1]{\langle #1 \rangle}
\def\nsg{\unlhd}
\def\kval{{k-\mathrm{valued}}}
\def\kalg{{k-\mathrm{alg}}}
\newcommand\GG[2]{\Gal(#1/#2)}
\newcommand{\MF}[3]{\Mat_{#1\times #2}(#3)}
\newcommand{\vectwo}[2]{\begin{bmatrix} #1 \\ #2 \end{bmatrix}}
\newcommand{\vecthree}[3]{\begin{bmatrix} #1 \\ #2 \\ #3\end{bmatrix}}
\def\ob{{\mathfrak{ob}} }
\def\qed{\square}
\def\sse{\subseteq}
\def\ss{\subset}
\def\ssne{\subsetneq}
\def\sm{\setminus}
\def\inv{^{-1}}
\newcommand{\es}{\emptyset}
\newcommand{\Zm}[1]{\Z/({#1})}
\def\ov#1{\overline{#1}}
\newcommand{\leg}[2]{\left(\frac{{#1}}{{#2}}\right)}
\def\th{^{th}}
\def\htpy{\simeq_{\mathrm{htpc}}}
\def\textand{ \, \text{and} \, }
\def\textor{ \, \text{or} \, }
\def\textfor{ \, \text{for} \, }
\def\textfa{ \, \text{for all} \, }
\def\textst{ \, \text{such that} \, }
\def\textin{ \, \text{in} \, }
\def\fg{ \, \text{finitely generated} \, }
\newcommand{\op}{\mathrm{op}}
\newcommand{\xra}[1]{\xrightarrow{#1}}
\newcommand{\xora}[1]{\xtwoheadrightarrow{#1}}
\newcommand{\xira}[1]{\xhookrightarrow{#1}}
\newcommand{\xla}[1]{\xleftarrow{#1}}
\def\lra{\longrightarrow}
\def\into{\hookrightarrow}
\def\onto{\twoheadrightarrow}
\newcommand{\vv}[1]{\mathbf{#1}}
\newcommand{\lm}[2]{{#1}\,\l + {#2}\,\mu}
\renewcommand{\v}{\vv{v}}
\renewcommand{\u}{\vv{u}}
\newcommand{\w}{\vv{w}}
\newcommand{\x}{\vv{x}}
\renewcommand{\k}{\vv{k}}
\newcommand{\0}{\vv{0}}
\newcommand{\1}{\vv{1}}
\newcommand{\vecs}[2]{#1_1,#1_2,\dots,#1_{#2}}
\newcommand{\us}[1][n]{\vecs{\u}{#1}}
\newcommand{\vs}[1][n]{\vecs{\v}{#1}}
\newcommand{\ws}[1][n]{\vecs{\w}{#1}}
\newcommand{\vps}[1][n']{\vecs{\v'}{#1}}
\newcommand{\ls}[1][n]{\vecs{\l}{#1}}
\newcommand{\mus}[1][n]{\vecs{\mu}{#1}}
\newcommand{\lps}[1][n]{\vecs{\l'}{#1}}
\def\td{\tilde{\delta}}
\def\oo{\overline{\omega}}
\def\ctJ{\tilde{\mathcal J}}
\def\tPhi{\tilde{\Phi}}
\def\te{\tilde{e}}
\def\M{\operatorname{M}}
\newcommand{\homotopic}{\simeq}
\newcommand{\homeq}{\cong}
\newcommand{\iso}{\approx}
\newcommand{\dual}{\vee}
\DeclarePairedDelimiter{\abs}{|}{|}
\newcommand{\bv}{{\bar{v}}}
\newcommand{\bu}{{\bar{u}}}
\newcommand{\bw}{{\bar{w}}}
\newcommand{\by}{{\bar{y}}}
\newcommand{\ba}{{\bar{a}}}
\newcommand{\bb}{{\bar{b}}}
\newcommand{\bx}{{\bar{x}}}
\DeclarePairedDelimiterX\setof[2]{\{}{\}}{#1\,|\,#2}
\newcommand{\vx}{\underline{x}}
\renewcommand{mod}[1]{\text{(mod }{#1})}
\newcommand{\Slv}[3]{\sum_{{#2}=1}^{{#3}} {#1}_{{#2}} \v_{{#2}}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 9.2 Quotient Rings, the Ring Isomorphism Theorems
“Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it.”
―Alan Perlis
Subsection Quotient Rings
Lemma 9.16 . Additive Cosets form Abelian Group.
For a two-sided ideal \(I\) of \(R\text{,}\) the set of additive cosets modulo \(I\) is \(R/I=\{r+I : r\in R\}.\) This is an abelian group with respect to addition given by \((r + I) + (s + I) = (r +s ) + I\text{.}\)
Definition 9.17 . Quotient Ring.
For a two-sided ideal \(I\) of \(R\) The quotient ring of \(R\) modulo \(I\) is the set \(R/I\) with addition defined as above and multiplication given by \((r + I) \cdot (s + I) = (rs) + I\text{.}\)
Exercise 9.18 . Quotient Rings are Rings.
Given a two-sided ideal \(I\) of \(R\text{,}\) prove that the quotient ring \(R/I\) is indeed a ring.
Just like we had with groups, it turns out our dear friend \(\Z/n\) has been a quotient all along.
Example 9.19 . Quotients of \(\Z\) .
If \(I=\igen n\) is an ideal in the ring \(\Z\text{,}\) then the quotient ring \(\Z/n\) is the familiar ring \(\Z/n\text{.}\)
This is where the common notation \(\Z/(n)\) comes from, even though it should be \(\Z/\igen n\) anyway.
And, once again, we have a quotient map that turns out to be a homomorphism.
Exercise 9.20 . Quotient Map is Surjective Ring Map.
Prove that the canonical quotient map \(q:R\to R/I\) is a surjective ring homomorphism.
Last but certainly not least, we have an analogue of
Theorem 3.39 for ideals.
Theorem 9.21 . Ideal iff Kernel of Ring Map.
Let \(R\) be a ring. A subset \(I\) of \(R\) is an ideal of \(R\) if and only if there exists a ring homomorphism \(\varphi\) such that \(\ker(\varphi)=I\text{.}\)
Subsection The Ring Isomorphism Theorems
We arrive at the isomorphism theorems for rings. We’ve seen most of this stuff before in different packaging, so lets jump right in.
Theorem 9.22 . UMP for Quotient Rings.
If \(f: R \to S\) is a ring homomorphism and \(I \subseteq R\) is an ideal such that \(I \subseteq \ker(f)\text{,}\) there exists a well defined ring homomorphism \(\overline{f}: R/I \to S\) such that \(\overline{f} (r+I) = f(r)\text{.}\) Furthermore, if \(f\) is surjective then \(\overline{f}\) is surjective and if \(I=\ker(f)\) then \(\overline{f}\) is injective.
Proof.
Ignoring \(\cdot\) for a minute, we know that there is a unique homomorphism \(\overline{f}\) of abelian groups from \((R/I, +)\) to \((S, +)\) such that \(\overline{f} (r+I) = f(r)\text{.}\) It remains only to check that \(\overline{f}\) preserves multiplication: Given elements \(r + I, s + I \in R/I\text{,}\) their product is \(rs + I\text{,}\) and we have
\begin{equation*}
\overline{f}(rs + I) = f(rs) = f(r)f(s) = f(r + I) f(s +I),
\end{equation*}
since \(f\) preserves multiplication.
Theorem 9.23 . First Isomorphism Theorem for Rings.
If \(f: R \to S\) is a ring homomorphism, then \(R/\ker(f)\cong \im(f)\) via the map \(\overline{f}\) given by \(\ov{f}(r + \ker(f)) = f(r)\text{.}\)
Proof.
Theorem 9.24 . Second Isomorphism Theorem for Rings.
Let \(S\) be a subring and let \(I\) be an ideal of \(R\text{.}\) Then \(S + I = \{s + i \mid s \in S, i \in I\}\) is a subring of \(R\text{,}\) \(S \cap I\) is an ideal of \(S\text{,}\) and
\begin{equation*}
\frac{S+I}{I}\cong \frac{S}{S\cap I}.
\end{equation*}
Theorem 9.25 . Third Isomorphism Theorem for Rings.
If \(R\) is a ring and \(I \subseteq J\) are two ideals of \(R\text{,}\) then \(J/I\) is an ideal of \(R/I\) and
\begin{equation*}
\frac{R/I}{J/I} \cong R/J \text{ via } (r + I) + J/I \mapsto r + J.
\end{equation*}
Theorem 9.26 . Lattice Isomorphism Theorem for Rings.
Suppose \(R\) is a ring and \(I\) is a two-sided ideal of \(R,\) and write \(\pi: R \to R/I\) for the quotient ring homomorphism. There is a bijection
\begin{equation*}
\Psi:\{\text{subrings of }R\text{ containing }I\}\to \{\text{subrings of }R/I\}, \Psi(S)=\pi(S)=S/I
\end{equation*}
with inverse
\begin{equation*}
\Phi:\{\text{subrings of }R/I\}\to\{\text{subrings of }R\text{ containing }I\}, \Phi(S)=\pi^{-1}(S).
\end{equation*}
Moreover this bijection induces a bijection between
\begin{equation*}
\{\text{ideals of}\;R\text{ containing }I\}\leftrightarrow \{\text{ideals of }R/I\}
\end{equation*}
since \(J\) is an ideal of \(R\) containing \(I\) if and only if \(\Psi(J)\) is an ideal of \(R/I\text{.}\)